THE STABILITY OF FUNCTIONAL INEQUALITIES WITH ADDITIVE MAPPINGS
نویسندگان
چکیده
منابع مشابه
Stability of Functional Inequalities with Cauchy-Jensen Additive Mappings
In 1940, Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms. We are given a group G and a metric group G′ with metric ρ(·,·). Given > 0, does there exist a δ > 0 such that if f :G→G′ satisfies ρ( f (xy), f (x) f (y)) < δ for all x, y ...
متن کاملFunctional Inequalities Associated with Additive Mappings
The functional inequality ‖f x 2f y 2f z ‖ ≤ ‖2f x/2 y z ‖ φ x, y, z x, y, z ∈ G is investigated, where G is a group divisible by 2, f : G→ X and φ : G3 → 0,∞ are mappings, and X is a Banach space. The main result of the paper states that the assumptions above together with 1 φ 2x,−x, 0 0 φ 0, x,−x x ∈ G and 2 limn→∞ 1/2 φ 2 1x, 2y, 2z 0, or limn→∞2φ x/2n−1, y/2, z/2 0 x, y, z ∈ G , imply that ...
متن کاملGeneralized additive functional inequalities in Banach algebras
Using the Hyers-Ulam-Rassias stability method, weinvestigate isomorphisms in Banach algebras and derivations onBanach algebras associated with the following generalized additivefunctional inequalitybegin{eqnarray}|af(x)+bf(y)+cf(z)| le |f(alpha x+ beta y+gamma z)| .end{eqnarray}Moreover, we prove the Hyers-Ulam-Rassias stability of homomorphismsin Banach algebras and of derivations on Banach ...
متن کاملAdditive ρ-functional inequalities
In this paper, we solve the additive ρ-functional inequalities ‖f(x+ y)− f(x)− f(y)‖ ≤ ∥∥∥∥ρ(2f (x+ y 2 ) − f(x)− f(y) )∥∥∥∥ , (1) ∥∥∥∥2f (x+ y 2 ) − f(x)− f(y) ∥∥∥∥ ≤ ‖ρ (f(x+ y)− f(x)− f(y))‖ , (2) where ρ is a fixed non-Archimedean number with |ρ| < 1 or ρ is a fixed complex number with |ρ| < 1. Using the direct method, we prove the Hyers-Ulam stability of the additive ρ-functional inequalit...
متن کاملOrthogonal stability of mixed type additive and cubic functional equations
In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$ is orthogonality in the sense of Ratz.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2009
ISSN: 1015-8634
DOI: 10.4134/bkms.2009.46.1.011